Posts Tagged Energy efficiency

Fossil Debt

An off-hand comment by Marc Gunther in an article on Solyndra about the started an email chain between the two of us on green jobs.

We agree that most of the debate is silly, but I see some interesting economics underlying green jobs. I explore those ideas in this article: The Microeconomics of Green Jobs.

The article also gave me the opportunity to explore a parallel between using fossil fuels and running up the deficit:

[I]f we spend too much borrowed money to create jobs today, the long-term drag on the economy caused by paying back the debt will leave everyone worse off.

Economic growth fueled by the extraction of non-renewable resources is very similar to economic growth fueled by debt. When we extract these resources and use them, we increase economic activity today, but their non-renewable nature means that we lose the opportunity to extract and use them tomorrow. Hence, the economic stimulus today comes at the cost of an economic drag tomorrow, and the future economic drag will generally be larger than today’s stimulus, since improving technology should allow us to get more benefit from each unit of resource in the future.

Using renewable resources to stimulate growth does not have this problem: Tapping the wind or the sun for energy today does nothing to diminish the wind or sun tomorrow.

In my mind, this is a deep contradiction in current Conservative politics: they don’t like debt (and I agree) but they do like fossil fuels.

I’d be a conservative, if being a conservative actually meant conserving things.

Comments (1)

JouleBug

Competition may just be the key to getting normal people to adopt energy efficiency. Keeping up with the Joneses is a lot more important to most people than saving money (otherwise, we’d never buy an expensive car to impress the neighbors.)

That’s why I’m excited to hear about JouleBug, a social App/game for the iPhone (and soon Android) that turns saving energy into a reality-based friendly competition.

Players compete to earn badges from various energy-saving activities

JouleBug launched today at the South by Southwest Trade show. Press release follows. Read the rest of this entry »

Comments (1)

Other Objections to PACE Programs

Micheal Giberson over at Knowledge Problem bounced off my article on why PACE financing would be unlikely to damage the mortgage market to mention several of his own worries about how such programs are implemented.

He and I are in agreement that there’s little wrong with PACE programs in principle, but they raise some thorny issues in practice. Here are a few of his worries. Micheal says:

If PACE is just a way for homeowners to scrape up subsidies – i.e. to improve their properties and make their neighbors’ pay for it – then I’m against it.

I agree, but with a caveat: one justification for subsidies for energy efficiency is that energy efficiency has positive externalities, and creates societal benefits. To the extent that energy efficiency subsidies are societal payments for societal benefits, there is no problem with using PACE to scoop up as many as possible. In fact, it should be encouraged.

Here are some of the societal benefits of energy efficiency:

1. Lower energy consumption reduced the need to build and upgrade energy infrastructure, a cost which is borne by all.
2. Lower greenhouse gas emissions.
3. Predictable energy bills reduce bankruptcies and foreclosures, lessening the need for social services and raising property prices.
4. Less money spent on energy assistance programs.
5. Local jobs from the economic multiplier when money is not spent on fossil fuels imported from outside the region.
6. Reduction in local air pollution from local power plants.
7. Lower water use in electricity generation.
8. Lower energy prices because of reduced energy demand.
9. More total jobs because energy efficiency improvements tend to be more labor-intensive than capital-intensive energy production.

Micheal goes on to say:

If my local government was proposing such a program, I’d worry that mismanagement would lead to future obligations for non-participating taxpayers. What is the mechanism that ensures civil servants will be effective loan officers? Will they get bonuses for doing good work or just be paid the same salary and promoted on schedule whether or not the loans they approved achieve intended results?

I agree with Micheal on this one, but this all depends on the particular implementation, although I just finished reading Micheal Lewis’s excellent book The Big Short: Inside the Doomsday Machine
on the Wall Street’s role in the subprime mortgage meltdown, and so I’m compelled to point out that civil servants would be hard pressed to do a worse job extending loans to unqualified buyers than any of dozens of mortgage lenders from 2005 to 2008.

And finally:

Maybe the more interesting question is how and why the retail energy and home mortgage marketplaces became so bollixed up that a municipal-government-sponsored home-improvement-lending tax authority work-around is seen as a promising way to help consumers make sensible energy-related improvements to their homes.

Now that’s a great question. If you want to know why the mortgage market is so messed up, I highly recommend The Big Short, a book that makes highly technical subjects easy to understand. I can say that because I had to learn exactly how CDS’s on CDO’s work in order to pass my Chartered Financial Analyst exams, and I wish this book had been around back then… it would have made the task much simpler.

As for why the energy market is bollixed up, I think it has to do with lack of just about everything that improves market efficiency. The consumer energy market has limited price transparency, a lack of price information and real-time pricing, a single monopoly supplier, a lack of knowledge on the part of the consumer, regulated prices, a cost-plus pricing model for most suppliers, and subsidies for the purchase of energy for many classes of customers. With all this going against it, it’s no surprise at all that the market is so dysfunctional that civil servants as loan officers starts to sound like a good idea.

Comments off

Cheap and Free Ways to Promote Energy Efficiency

by Tom Konrad, Ph.D.

Big spending Demand-Side Management programs are not the only way to promote Energy Efficiency.

The Sierra Club’s Rocky Mountain chapter has decided that one of their priorities for 2010 is promoting Energy Efficiency. Since that decision was, at least in part, due to my suggestions as part of their Energy Committee, I volunteered to chair the effort for at least as long as I’m still in Colorado. (I’m planning a move to Connecticut with my wife, but we are waiting for our house to sell first.)

In normal times, we might consider lobbying the state government for incentives to promote energy efficiency, such as those offered as part of the stimulus package. However, a state legislator who came to our last Energy Committee meeting was quite clear: Colorado will be eliminating all (or nearly all) tax incentives next year, so Energy Efficiency programs that rely on state funds are not going to be an effective way forward. For people who, like me had hoped to use Colorado’s recently passed 85% tax credit for PHEV conversions next year, that means we’re probably out of luck. You heard it here first.

Not All Bad News

As I wrote at the start of the financial crisis, even though there may be less subsidies for energy efficiency, leaner budgets make people more open to the idea of cost saving from energy efficiency. Since subsidies are less likely to be available to break down some of the cost barriers against energy efficiency, it makes sense to use our efforts to break down some of the non-cost barriers.

Eric Hirst of Oak Ridge National Laboratory identifies these barriers to energy efficiency improvements:
Barriers to improving U.S. energy efficiency:

Structural barriers­conditions beyond the control of the end user

  • distortions in electricity pricing
  • supply infrastructure limitations

Behavioral barriers­conditions that characterize end users

  • efficiency attitudes and awareness
  • perceived riskiness of efficiency measures
  • obtaining and processing information
  • limited access to capital
  • misplaced incentives
  • inconvenience, loss of amenities

The ones that might be addressed without much money are:

  • efficiency attitudes and awareness
  • perceived riskiness of efficiency measures
  • obtaining and processing information
  • misplaced incentives

Attitudes and Awareness

This barrier has to do with people’s mistaken beliefs: For instance, the belief energy efficiency always requires giving something up (not true: a better sealed and insulated home is less drafty and more comfortable as well as being more energy efficient.) Similarly, some people like to waste energy because conserving is un-macho.

Public relations efforts to make people feel better about efficiency can be very inexpensive. For instance, SMUD’s monthly reports to its customers as to how their consumption compares to their neighbors is something that could be emulated by other utilities.

Another method that might also help to make energy efficiency a social norm also involves competition with neighbors: households with low energy use might also be given inexpensive yard signs, allowing them to brag about their energy sipping lifestyle. This might also address some of the perceived riskiness barrier, because when people see others doing something, they are much more inclined to feel that it is both acceptable and safe.

Misplaced Incentives

Misplaced incentives occur when the person who would pay for efficiency improvements is different from the person who pays the energy bill (and would receive the benefits.) Two examples are landlords and tenants, and homebuilders and home buyers.

Builders have been making strides communicating the energy efficiency of their homes through various certification schemes, such as LEED, Built Green, and Energy Star. When the building buyer can assess the efficiency of a building because it carries a widely recognized green certification, he is likely to be willing to pay more for that building. The same is true for renters.

These voluntary moves are a start, but making energy use disclosure mandatory, as opposed to voluntary, should help bring along the reluctant majority who are not already following these practices. If an energy audit or past energy bills were required to be provided by the seller or landlord whenever a building is sold or leased, buyers and renters could decide for themselves how much more they would be willing to pay for an efficient building, and the current owner would have an incentive to make cost-effective improvements beforehand.

Markets and Information

Efficient markets require good information. A large part of the reason that so many opportunities for energy efficiency exist is that information about energy use is not widely available and often difficult to come by. Measures such as those I suggest above all improve information about energy use, and hence should promote the more efficient use of energy at very little cost.

Comments off

Managing the Peak Fossil Fuel Transition 

EROI and EIRR

by Tom Konrad, Ph.D.

Current renewable energy technologies must be adopted in conjunction with aggressive Smart Growth and Efficiency if we hope to continue our current standard of living and complex society with diminished reliance on fossil fuels. These strategies have the additional advantage that they can work without large technological breakthroughs. 

Energy Return on Investment

Energy keeps our economy running.  Energy is also what we use to obtain more energy.  The more energy we use to obtain more energy, the less we have for the rest of the economy.  

The concept of Energy Return on Investment (EROI), alternatively called Energy Return on Energy Invested (EROEI) has been widely used to quantify this concept.  The following chart, from a SciAm paper, shows the EROI of various sources of energy, with the tan section of the bar representing the range of EROIs depending on the source and the technology used.  I’ve seen many other estimates of EROI, and this one seems to be on the optimistic (high EROI) end for most renewable energy sources.

The general trend is clear: the energy of the future will have lower EROI than the energy of the past.  Low carbon fuels such as natural gas, nuclear, photovoltaics, wind, and biofuels have low EROI compared to high-carbon fuels such as coal and (formerly) oil.   

The graph also clearly shows the decline in the EROI over time for oil.  Other fossil fuels, such as coal and natural gas, also will have declining EROI over time.  This happens because we always exploit the easiest resources first.  The biggest coal deposits that are nearest to the surface and nearest to customers will be the first ones we mine. When those are depleted, we move on to the less easy to exploit deposits.  The decline will not be linear, and new technology can also bring temporary improvements in EROI, but new technology cannot change the fact that we’ve already exploited all the easiest to get deposits, and new sources and technologies for extracting fossil fuels often fail to live up to the hype.

While there is room for improvement in renewable energy technologies, the fact remains that fossil fuels allow us to exploit the energy of millions of years of stored sunlight at once.  All renewable energy (solar, wind, biomass, geothermal) involves extracting a current energy flux (sunlight, wind, plant growth, or heat from the earth) as it arrives.  In essence, fossil fuels are all biofuels, but biofuels from plants that grew and harvested sunlight over millions of years.  I don’t think that technological improvements can make up for the inherent EROI advantage of the many-millions-to-one time compression conveys to fossil fuels.

Hence, going forward, we are going to have to power our society with a combination of renewable energy and fossil fuels that have EROI no better than the approximately 30:1 potentially available from firewood and wind.  Since neither of these two fuels can come close to powering our entire society (firewood because of limited supply, and wind because of its inherent variability.) Also, storable fuels such as natural gas, oil, and biofuels all have either declining EROI below 20 or extremely low EROI to begin with (biofuels). Energy storage is needed to match electricity supply with variable demand, and to power transportation. 

Neither hydrogen nor batteries will replace the current storable fuels without a further penalty to EROI.  Whenever you store electricity, a certain percentage of the energy will be lost.  The percent that remains is called the round-trip efficiency of the technology, shown on the vertical axis of the graph below, taken from my earlier comparison of electricity storage technologies. (Click to enlarge.)

Storage Technology Comparison

Round trip efficiency (RTE) for energy storage technologies is equivalent to EROI for fuels: it is the ratio of the energy you put in to the energy you get out.  You can see from the chart, most battery technologies cluster around a 75% RTE.   Hence, if you store electricity from an EROI 20 source in a battery to drive your electric vehicle, the electricity that actually comes out of the battery will only have an EROI of 20 times the RTE of the battery, or 15.  Furthermore, since batteries decay over time, some of the energy used
to create the battery should also be included in the EROI calculation, leading to an overall EROI lower than 15.

The round trip efficiency of hydrogen, when made with electrolyzers and used in a fuel cell, is below 50%, meaning that, barring huge technological breakthroughs, any hoped-for hydrogen economy would have to run with an EROI from energy sources less than half of those shown.

Taking all of this together, I think it’s reasonable to assume that any future sustainable economy will run on energy sources with a combined EROI of less than 15, quite possibly much less. 

It’s Worse than That: The Renewables Hump

All investors know that it matters not just how much money you get back for your investment, but how soon.  A 2x return in a couple of months is something to brag about, a 2x return over 30 years is a low-yield bond investment, and probably hasn’t even kept up with inflation.

The same is true for EROI, and means that users of EROI who are trying to compare future sources of energy with historic ones are probably taking an overly-optimistic view.  For fossil fuels, the time we have to wait between when we invest the energy and when we get the energy back in a form useful to society is fairly short.  For instance, most of the energy that goes into mining coal comes in the digging process, perhaps removing
a mountaintop and dumping the fill
, followed by the actual digging of the coal and shipping it to a coal plant.  Massey Energy’s 2008 Annual Report [pdf] states that "In 2008… we were able to open 19 new mines, and ten new sections at existing underground mines."  This hectic rate of expansion leads me to believe that the time to open a new mine or mine section is at most 2 years, and the energy cycle will be even quicker at existing mines, when the full cycle between when the coal is mined and when it is burnt to produce electricity requires only the mining itself, transport to a coal plant, and perhaps a short period of storage
at the plant.  Most coal plants only keep a week or two supply of coal on hand.

In contrast, Nuclear and Renewable energy (with the exception of biofuels and biomass) present an entirely different picture.  A wind farm can take less than a year to construct, it will take the full farm life of 20 years to produce the 10 to 30 EROI shown in the graph.  Solar Photovoltaic’s apparent EROI of around 9 looks worse when you consider that a solar panel has a 30 year lifetime.  Only a little of the energy in for Nuclear power comes in the form of Nuclear fuel over the life of the plant: most is embodied in the plant itself.   

Jeff Vail has been exploring this concept on his blog and the Oil Drum.  He refers to the problem of the front-loading of energy investment for renewable energy as the Renewables Hump.  He’s also much more pessimistic than the above chart about the actual EROI of most renewables, and found this chart from The Economist which illustrates the up-front nature of the investment in Nuclear and Wind: 

In terms of EROI timing, those technologies for which the cost of generation includes more fuel have an advantage, because the energy used to produce the fuel does not have to be expended when the plant is built.

In a steady state of technological mix, EROI is the most important number, because you will always be making new investments in energy as old investments outlive their useful lives and are decommissioned.  However, in a period of transition, such as the one we are entering, we need a quick return on our energy investments in order to maintain our society.  Put another way, Jeff Vail’s "Renewables Hump" is analogous to a cash-flow problem.  We have to have energy to invest it; we can’t simply charge it to our energy credit
card and repay it later.  That means, if we’re going to keep the non-energy economy going while we make the transition, we can’t put too much energy today into the long-lived energy investments we’ll use tomorrow.

To give a clearer picture of how timing of energy flows interacts with EROI, I will borrow the concept of Internal
Rate of Return (IRR)
from finance.  This concept is covered in any introductory finance course, and is specifically designed to be used to provide a single value which can be used to compare two different investments with radically different cash flow timing by assigning each a rate of return which could produce those cash flows if the money invested were compounded continuously.

Except in special circumstances involving complex or radically different size cash flows, an investor will prefer an investment with a higher IRR.

Energy Internal Rate of Return (EIRR)

I first suggested that IRR be adapted to EROI analysis by substituting energy flows for investment flows in early 2007.  I called the concept Energy
Internal Rate of Return, or EIRR
.  Since no one else has picked up the concept in the meantime, I’ve decided to do some of the basic analysis myself.

To convert an EROI into an EIRR, we need to
know the lifetime of the installation, and what percentage of the energy cost is fuel compared to the percentage of the energy embodied in the plant.  The following chart shows my preliminary calculations for EIRR, along with the plant lifetimes I used, and the EROI shows as the size of each bubble.

 EIRR

The most valuable energy resources are those with large bubbles (High EROI) at the top of the chart (High EIRR.)  Because of the low EIRR of Photovoltaic, Nuclear, and Hydropower, emphasizing these technologies in the early stage of the transition away from fossil fuels is much more likely to lead to a Renewables Hump scenario in which we don’t have enough surplus energy to both make the transition without massive disruption to the rest of the economy.

How to Avoid a "Renewables Hump"

Note that the three fossil fuels (oil, gas, and coal) all have high EIRRs.  As we transition to lower carbon fuels, we will want to keep as many high EIRR fuels in our portfolio as possible. 

The chart shows two renewables with EIRRs comparable to those of fossil fuels: Wood cofiring, and Wind.  Wood cofiring, or modifying existing coal plants to burn up to 10% wood chips instead of coal was found to be one of the most economic ways of producing clean energy in the California RETI study. The scope for incorporating biomass cofiring is fairly limited, however, since it requires an existing coal plant (not all of which are suitable) as well as a local supply of wood chips.  Some coal plants may also be converted entirely to wood, but only in regions with plentiful supplies of wood and for relatively small plants.  The EIRR for this should fall somewhere between Wood cofiring and Wood Biomass, which is intended to represent the cost of new wood to electricity plants.

Natural Gas

To avoid a Renewables Hump, we will need to emphasize high-EIRR technologies during the transition period.  If domestic natural gas turns out to be as abundant as the industry claims (there are serious doubts about shale gas abundance,) then natural gas is an ideal transition fuel.  The high EIRR of natural gas fired generation arises mostly because,
as shown in the chart "it’s a gas" most of the cost (and, I assume energy investment) in natural gas generation is in the form of fuel.  Natural gas generation also has the advantage of being dispatchable with generally quick ramp-up times.  This makes it a natural complement to the variability of solar and wind.

However, I think it is unlikely that we’ll have enough domestic natural gas to both (1) rely much more heavily on it in electricity generation and (2) convert much of our transportation fleet to natural gas, as suggested by T Boone Pickens.  We’re going to need more high-EIRR technologies to manage the transition.  Fortunately, such technologies exist: the more
efficient use of energy.  

Energy Efficiency and Smart Growth

I have been unable to find studies of the EROI of various efficiency
technologies.  For instance, how much energy is embodied in insulation, and how does that compare to the energy saved?  We can save transportation fuel with Smart Growth strategies such as living in more densely populated areas that are closer to where we work, and investing in mass transit infrastructure. 
The embodied energy of mass transit can be quite high in the case of light rail, or it can be very low in the case of better scheduling and incentives for ride sharing.

Many efficiency and smart growth technologies and methods are likely to have much
higher EIRRs than fossil fuels.  We can see this because, while the
embodied energy has not been well studied, the financial returns have. 
Typical investments in energy efficiency in utility run DSM programs cost
between $0.01 and $0.03 cents per kWh saved, much less than the cost of new fossil-fired generation.  This implies a higher EIRR for energy efficiency, because part of the cost of any energy efficiency measure will be the cost of the embodied energy, while all of the savings are in the form or energy.   This relationship implies that higher IRR technologies will generally have higher EIRRs as well.  

Smart growth strategies also often show extremely high financial returns, because they reduce the need for expensive cars, roads, parking, and even accidents [pdf.]

Conclusion: Brian or Brawn

The Renewables Hump des not have to be the massive problem it seems when we only look at supply-side energy technologies.  By looking at demand side solutions, such as energy efficiency, conservation, smart growth, and transit solutions, we need not run into a situation where the energy we have to invest in transitioning from finite and dirty fossil fuels to limitless and clean renewable energy overwhelms our current supplies.  

Efficiency and Smart Growth are "Brain" technologies, as opposed to the "Brawn" of traditional and new energy sources.  As such, their application requires long-term planning and thought.  Cheap energy has led to a culture where we prefer to solve problems by simply applying more brawn.  As our fossil fuel brawn fades away, we will have to rely on our brains once again if we hope to maintain anything like our current level of economic activity.

Comments (16)

Greener Money in Smart Energy Living

5/24/10 note: If you’re looking for GreenerMoney.com: I have no idea where it is. However, I have written a series of free articles intended for people interested in green investing. You can find it here: Green Investing for Beginners.

The new edition of Smart Energy Living Magazine is out, including the first of a regular series of columns called “Greener Money” by Yours Truly, discussing investing in clean energy.

The new editor (Rebecca Cantwell) has totally revamped this magazine about how to live energy efficiently. My column will be familiar to readers of my blogs, but you will likely learn something about other aspects of green living. You can sign up for a free copy here.

Comments (14)

Follow

Get every new post delivered to your Inbox.

Join 154 other followers